Corrigendum to “Superlubricity of carbon nanostructures” [Carbon 158 (2020) 1–23]
نویسندگان
چکیده
منابع مشابه
Superlubricity in layered nanostructures
Interaction between two surfaces in relative motion can give rise to energy dissipation and hence sliding friction. A significant portion of the energy is dissipated through the creation of non-equilibrium phonons. Recent advances in material synthesis have made the production of specific single layer honeycomb structures and their multilayer phases, such as graphene, graphane, fluorographene, ...
متن کاملSuperlubricity in Layered Nanostructures
Interaction between two surfaces in relativemotion can give rise to energy dissipation and hence sliding friction. A significant portion of the energy is dissipated through the creation of non-equilibrium phonons. Recent advances in material synthesis have made the production of specific single layer honeycomb structures and their multilayer phases, such as graphene, graphane, fluorographene, M...
متن کاملSpectroelectrochemistry of carbon nanostructures.
This review is focused on charge-transfer reactions at carbon nanotubes and fullerenes. The spectroelectrochemistry of fullerenes deals with the spin states of fullerenes, the role of mono-anions and the reactivity of higher charged states in C60. The optical (Vis-NIR) spectroelectrochemistry of single-walled carbon nanotubes (SWNTs) follows changes in the allowed optical transitions among the ...
متن کاملClaromatic Carbon Nanostructures
Eric Clar’s qualitative ideas for benzenoids are described in application to various novel nanostructures: graphene, edges in graphene, carbon nanotubes, carbon nanocones, and carbon nanotori. The specially singled out most highly aromatic species with Clar structures consisting entirely of aromatic sextets are proposed to be termed “claromatic”. Several such claromatic nanostructures are ident...
متن کاملSuperlubricity and Wearless Sliding in Diamondlike Carbon Films
Diamondlike carbon (DLC) films have attracted great interest in recent years mainly because of their unusual optical, electrical, mechanical, and tribological properties. Such properties are currently being exploited for a wide range of engineering applications including magnetic hard disks, gears, sliding and roller bearings, scratch resistant glasses, biomedical implants, etc. Systematic stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carbon
سال: 2020
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2020.01.043